
HIGH-DEF FUZZING
EXPLORING VULNERABILITIES IN

HDMI-CEC
 name = "Joshua Smith"
 job = "Senior Security Researcher"
 job += "HP Zero Day Initiative"
 irc = "kernelsmith"
 twit = "@kernelsmith"

Which of the following is false?
1. Have had 10 knee surgeries... and 5 others
2. Worked at JHUAPL... did mostly weapon sys assessments
3. Was voted "most athletic" in high school... don't judge a

book by its cover ;)
4. Previously ran assessments at the 92d Info. Warfare

Aggressor Sq. (USAF)... now 92d Info. Ops. Sq - vuln
assessments/pentests/red teams

5. Have a B.S. in Aeronautical Engineering from RPI...
Indeed. Also, an MIS & some CS from JHU

6. Am an external Metasploit dev... I was, but quit last month
7. Had C2 of 50 nuclear ICBMs on 11 Sep 2001... Interesting

story

Overview
What is CEC
Specs & Implementations
Design Details
Protocol
Attack Vectors & Surface
Fuzzing CEC
Some Results
Future Work

Why?
Wanted to research an area that was relatively untouched
For me: assembly > C/C++ and RISC > CISC
Another attack vector for mobile devices via:

Mobile High-Definition Link (MHL)
Slimport
Many car stereos as well

My son is completely obsessed with cords/wires, esp
HDMI

Previous Research
HDMI – Hacking Displays Made Interesting

Andy Davis
BlackHat EU 2012
GUI Python CEC fuzzer

Somewhat simplistic
No exception monitoring
No crash data gathering

What is HDMI?
High Def Multimedia Interface

HDMI is an interface specification
Implemented as cables & connectors
Successor to DVI

What is CEC?
Consumer Electronics Control
Feature defined in the HDMI spec
Allows user to command & control up to 15 devices
Can relay commands from remotes
It's what automatically changes your TV input
Vendor-extendable
Adopted by some other technologies

That Don't Look
Like HDMI!
Still has CEC however

Slimport
Think ~ Amazon, Google, Blackberry, LG G+

Mobile High-Definition Link (MHL)
Think ~ HTC, LG Optimus+, Samsung (not G6)
Remote Control Protocol

Specs & Features
History

Ver Published Features

1.0 Dec 2002 Boring stuff

1.1 May 2004 Boring stuff

1.2 Aug 2005 Boring stuff

1.2a* Dec 2005 Fully spec'd CEC

* This is the good stuff, for vulnerabilities anyway

Specs & Features
History Continued

Ver Published Features

1.3-3c '06-'08 Whizz-bang A/V & new conns

1.4* May 2009 Features++: 4k, HEC, ARC, 3D, micro

2.0 Sep 2013 4k @60fps, Dual View, 3D++, CEC++

* Most widely deployed & available, more in a sec

Interesting 1.4 Features
ARC (Audio Return Channel)
HEC (HDMI Ethernet Connection)

100Mb/s
Enables traditional networking w/HDMI

CEC Details
1-wire bidirectional serial bus
Slow: 500 bit/s
Uses AV.link protocol to perform remote control
functions
For HDMI:

CEC wiring is mandatory
CEC functionality (software support) is optional

Notable
Implementations

Commercial industry uses various trade names
Anynet+ (Samsung), Aquos Link (Sharp), BRAVIA
Link/Sync (Sony)
SimpLink (LG), VIERA Link (Panasonic), EasyLink
(Philips), etc

Open Source
libCEC (dual commercial license)
Android HDMI-CEC

Android HDMI-CEC

CEC Addressing
PHYSICAL

N.N.N.N where 0x0<=N<=0xF
Root display (TV) is always 0.0.0.0
Required as CEC has a notion of switching

LOGICAL
L where 0x0<=L<=0xF
Root display (TV) is always 0
Negotiated by product type
Example: first STB in system is always 3

Logical Addresses
Address Device Address Device

0 TV 8 Playback Dev 2

1 Rec. Device 1 9 Rec Device 3

2 Rec. Device 2 10 Tuner 4

3 Tuner 1 11 Playback Dev 3

4 Playback Dev 1 12 Reserved

5 Audio System 13 Reserved

6 Tuner 2 14 Free Use

7 Tuner 3 15 Unreg/Broadcast

CEC Protocol

Header Block
Source Dest EoM Ack

3 2 1 0 3 2 1 0 E A
(4bits) Logical address of source
(4bits) Logical address of dest
(2bits) Control bits (EoM & Ack)
Example: 0100:0000:0:0 = Src 4, Dest 0

Data Block
Data EoM Ack

7 6 5 4 3 2 1 0 E A
(8bits) Data (Big-endian/MSB first)
(2bits) Control bits (EoM & Ack)
Example: 01000001:1:0 = "A"

Opcode Block
Really just a data block

Opcode EoM Ack

7 6 5 4 3 2 1 0 E A
(8bits) Opcode (Big-endian/MSB first)
(2bits) Control bits (EoM & Ack)
Example: 10000010:1:0 = 0x82 (Active Source)

CEC Protocol
The long and short of it...

0F - Broadcast ping
1 F :82 :10:00
Source Dest (Bcast) Opcode (Active Src) Param (PA of src)
1 0 :64 :40:52:75:78:43:6F:6E:32:30:31:35
Source Dest (TV) Opcode (Set OSD String) Msg params
44: Display control flags, rest is ASCII string
S D :OP :61:41:41:41:41:41:41:41:41:41:41:41:41:41
Source Dest Opcode Msg params

CEC Protocol
Pinging and Polling

The "Ping"
EOM bit in header is set to 1
Used to poll for devices etc (fuzz monitor?)

Source & dest addresses will be different
Also used for allocating Logical Addresses

Source & dest addresses are the same

CEC Protocol
Additional Info

Big-endian/MSB first
Text is only printable ASCII (0x20 <= A <= 0x7E)
Messages can be directly addressed, broadcast, or either
Should ignore a message coming from address 15, unless:

Message invokes a broadcast response
Message has been sent by a CEC Switch
The message is Standby

CEC Protocol
Transmission (Flow) Control

3 mechanisms to provide reliable frame transfer
1. Frame re-transmissions (1 to 5)
2. Flow control
3. Frame validation (ignore msgs w/wrong #args)
A message is assumed correctly received when:

It has been transmitted and acknowledged
A message is assumed to have been acted upon when:

Sender does not receive Feature Abort w/in 1sec
Might be useful during fuzzing

Attack Vectors &
Thoughts

HDMI-network exploitation via CEC
HDMI Ethernet Channel (HEC)

Network connectivity to things thought un-networked
Great place to hide
Range of targetable devices

TVs, BluRays, receivers, "TV Sticks", game consoles?
Mobile phones & tablets

Devices implementing MHL/Slimport
Known popular mobile devices that implement MHL

Known popular mobile devices that implement MHL

Attack Surface
CEC commands
CEC vendor-specific commands
HEC commands
HEC functionality

Finding Vulns
Approaches

Identify "at-risk" messages & fuzz
Source Code Analysis

Hard to come by except libCEC & Android
Reverse Engineering

Can be hard to get all the firmwarez
Expect different architectures

MIPS, ARM, ARC etc
MIPS is generally most popular so far

Interesting Messages
String operations

Set OSD Name (0x47)
Preferred name for use in any OSD (menus)

Set OSD String (0x64)
Text string to the TV for display

Set Timer Program Title (0x67)
Set the name of a program associated w/a timer

Vendor-specific Messages
Because who knows what they might do

In Order to Fuzz
We Need to Answer Some Questions

How can we send arbitrary CEC commands?
How can we detect if a crash occurred?

Sending Messages
Hardware

~0 {lap,desk}tops with HDMI-CEC
Many have HDMI, none have CEC

Adapters
Pulse-Eight USB-HDMI
RainShadow HDMI-CEC to USB Bridge

Raspberry Pi
RPi & P8 adapter both use libCEC :)

Sending Messages
Software

Pulse-Eight driver is open source (libCEC)
Dual-licensed actually (GPLv2/Commercial)
Python SWIG-based bindings
Supports a handful of devices

Fuzzing CEC
libCEC

Can send CEC messages with:
Raspberry Pi + libCEC
P8 USB-HDMI adapter + libCEC

But can we really send arbitrary CEC messages?
lib.Transmit(CommandFromString("10:82:41:41:41:41:41:41:41"))

YES. It would appear at least.

To know for sure, had to ensure libCEC was not validating.

Fuzzing Process
It has been done (Davis) with Python + RainbowTech
serial API

I actually did not know this until late in the research
RainbowTech device has a nice simple serial API
Not much complex functionality
I had already started down the path below

libCEC + Python since pyCecClient is already a thing
Can use the P8 USB adapter and/or Raspberry Pi(s)
May port to Ruby since SWIG & Ruby++

https://media.blackhat.com/bh-eu-12/Davis/bh-eu-12-
Davis-HDMI-WP.pdf

https://media.blackhat.com/bh-eu-12/Davis/bh-eu-12-Davis-HDMI-WP.pdf

Fuzzing Process
Major Steps

ID Target and Inputs

Generate Fuzzed Data

Execute Fuzzed Data

Monitor for Exceptions

Determine Exploitability

Fuzzing: Brute Force Vulnerability Discovery (Sutton, Michael; Greene, Adam; Amini, Pedram)

Generate Fuzzed Data
Started with "long" strings and string-based messages
Format strings
Parameter abuse
Vendor-specific messages
Simple bit-flipping
Adopted some from Davis work

Execute Fuzzed Data
1. Poll device
2. Send message

Monitor for Exceptions
1. Check for ack if applicable
2. Poll again
3. If debug, use that
4. If shell, check if service/app still running
5. If TV, will probably notice crash, fun, hard to automate
6. If exception, record msg & state & debug details if avail

If Shell but !Debugger
Samsung BluRay Player has BASH
But not 'watch'
Fake it:

while true; do
 date
 ps aux | grep "[a]pp_player"
 if [$? ne 0]; then
 # do crash investigation
 fi
 sleep 0.5
done

Also TTY Output
[API_CECCMD_FeatureAbort] Return value is 0x31
API_CECCMD_FeatureAbort(op:0xB4) start.
[AP_INFOLINK/Fatal] 8:Starting background widget manager !!!
[TCFactory::GetOption] option = 37 value = 0
[TCFactory::GetOption] option = 51 value = 0
[API_CECCMD_FeatureAbort] Return value is 0x36
verified = 1
[AP_INFOLINK/Fatal] 9:CWidgetEngine::createSmartSideBar ret TRUE
[AP_INFOLINK/Fatal] 10:CWidgetEngine::activateSmartSideBar ret TRUE

DETERMINE EXPLOITABILITY
This is kind of an adventure unless debug
Specific to each device

Fuzzing
Complications

Getting Hold of Devices
They are around you however, just need to look
Can also emulate w/QEMU + firmware

Speed
500 bits/s
Not much we can do about that
Fuzz multiple devices simultaneously
RE targets to focus the fuzz

Fuzzing
Complications Continued

Debugging
Need to get access to the device

Probably no debugger
Often painful to compile one for it
Keep an eye out for gdbserver files however

Collect Data
Deduplicate
Repro

Targets
Home Theater Devices

Samsung Blu-ray Player (MIPS)
Targeted because already have shell
(Thx Ricky Lawshae & Jon Andersson)
Local shell to get on & study device

Philips Blu-ray Player
Samsung TV
Panasonic TV
Chromecast
Amazon Fire TV Stick

Targets
Mobile devices

Kindle Fire
Galaxy S5 (S6 dropped MHL)
Galaxy Note
Chromebook

Results
There's definitely more to be done

Issues Discovered
Panasonic TV
Samsung Blu-ray Player

Panasonic Can Haz
Upgrade?

Samsung's app_player
Handles CEC for BluRay player
Pulled via Ricky's root shell
Did some manual RE and
Rudimentary analysis with some ghetto IDAPython

banned = ['memcpy', 'strcpy', 'strncpy', 'etc...']
for func in banned:
 print('Processing ' + func)
 for xref in idautils.CodeRefsTo(idc.LocByName(func), True):
 print(idc.Name(
 idc.GetFunctionAttr(
 xref, idc.FUNCATTR_START
)) + ' disasm: ' + idc.GetDisasm(xref))

Samsung's app_player
jalr $t9; strcpy => 333
jalr $t9; strncpy => 409
jalr $t9; memcpy => 310
jalr $t9; [.*]printf => 11685
/me wrings hands
However, most are not called by CEC code :(

3 memcpy's, 2 of which I had already found manually
73 printf's, but aren't (so far) exploitable conditions

app_player

Post exploitation
Enable HEC
Enable LAN

Attack LAN services if nec
Enable higher speed exfil etc

Control an MHL device
Beachhead for attacking other devices
Hiding

Future Work
Unuglify my Python
Integrate into bigger/better fuzz framework
Exploit CEC & bind shell to network interface
Exploit CEC, enable HEC, bind shell to HEC interface
Exploit CEC & "bind" shell to HDMI interface
Explore attack surface of:

HDMI: 3D, Audio Return Channel, more w/HEC
Feature adds to CEC (HDMI 2.0)

Moar devices
Emulation

Conclusion
Becoming more and more pervasive and invasive
Old vuln types may be new again
May be benefitting simply because code is newer
Hard, sometimes impossible, to upgrade, maintain,
configure
Risk = Vulnerabilty x Exposure x Impact

Exposure is growing
Impact is probably highest for your privacy

Links
 not yet tho

P8 USB-HDMI Adapter
Simplified Wrapper & Interface Generator
Reveal.js

github.com/ZDI/hdfuzzing
blackhat.com/bh-eu-12-Davis-HDMI
github.com/Pulse-Eight/libcec
hdmi.org

www.pulse-eight.com
swig.org

github.com/hakimel/reveal.js
cec-o-matic.com

http://www.cec-o-matic.com/
https://github.com/hakimel/reveal.js
http://hdmi.org/
http://www.swig.org/
https://media.blackhat.com/bh-eu-12/Davis/bh-eu-12-Davis-HDMI-WP.pdf
http://www.pulse-eight.com/store/products/104-usb-hdmi-cec-adapter.aspx
https://github.com/ZDI/hdfuzzing
https://github.com/Pulse-Eight/libcec

Questions?

@kernelsmith @thezdi

